Masked Images Are Counterfactual Samples for Robust Fine-tuning

03/06/2023
by   Yao Xiao, et al.
0

Deep learning models are challenged by the distribution shift between the training data and test data. Recently, the large models pre-trained on diverse data demonstrate unprecedented robustness to various distribution shifts. However, fine-tuning on these models can lead to a trade-off between in-distribution (ID) performance and out-of-distribution (OOD) robustness. Existing methods for tackling this trade-off do not explicitly address the OOD robustness problem. In this paper, based on causal analysis on the aforementioned problems, we propose a novel fine-tuning method, which use masked images as counterfactual samples that help improving the robustness of the fine-tuning model. Specifically, we mask either the semantics-related or semantics-unrelated patches of the images based on class activation map to break the spurious correlation, and refill the masked patches with patches from other images. The resulting counterfactual samples are used in feature-based distillation with the pre-trained model. Extensive experiments verify that regularizing the fine-tuning with the proposed masked images can achieve a better trade-off between ID and OOD, surpassing previous methods on the OOD performance. Our code will be publicly available.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset