Masked Conditional Random Fields for Sequence Labeling

03/19/2021
by   Tianwen Wei, et al.
0

Conditional Random Field (CRF) based neural models are among the most performant methods for solving sequence labeling problems. Despite its great success, CRF has the shortcoming of occasionally generating illegal sequences of tags, e.g. sequences containing an "I-" tag immediately after an "O" tag, which is forbidden by the underlying BIO tagging scheme. In this work, we propose Masked Conditional Random Field (MCRF), an easy to implement variant of CRF that impose restrictions on candidate paths during both training and decoding phases. We show that the proposed method thoroughly resolves this issue and brings consistent improvement over existing CRF-based models with near zero additional cost.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset