MaskBlock: Transferable Adversarial Examples with Bayes Approach
The transferability of adversarial examples (AEs) across diverse models is of critical importance for black-box adversarial attacks, where attackers cannot access the information about black-box models. However, crafted AEs always present poor transferability. In this paper, by regarding the transferability of AEs as generalization ability of the model, we reveal that vanilla black-box attacks craft AEs via solving a maximum likelihood estimation (MLE) problem. For MLE, the results probably are model-specific local optimum when available data is small, i.e., limiting the transferability of AEs. By contrast, we re-formulate crafting transferable AEs as the maximizing a posteriori probability estimation problem, which is an effective approach to boost the generalization of results with limited available data. Because Bayes posterior inference is commonly intractable, a simple yet effective method called MaskBlock is developed to approximately estimate. Moreover, we show that the formulated framework is a generalization version for various attack methods. Extensive experiments illustrate MaskBlock can significantly improve the transferability of crafted adversarial examples by up to about 20
READ FULL TEXT