Markov Random Walk Representations with Continuous Distributions

10/19/2012
by   Chen-Hsiang Yeang, et al.
0

Representations based on random walks can exploit discrete data distributions for clustering and classification. We extend such representations from discrete to continuous distributions. Transition probabilities are now calculated using a diffusion equation with a diffusion coefficient that inversely depends on the data density. We relate this diffusion equation to a path integral and derive the corresponding path probability measure. The framework is useful for incorporating continuous data densities and prior knowledge.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro