Markov Equivalences for Subclasses of Loopless Mixed Graphs
In this paper we discuss four problems regarding Markov equivalences for subclasses of loopless mixed graphs. We classify these four problems as finding conditions for internal Markov equivalence, which is Markov equivalence within a subclass, for external Markov equivalence, which is Markov equivalence between subclasses, for representational Markov equivalence, which is the possibility of a graph from a subclass being Markov equivalent to a graph from another subclass, and finding algorithms to generate a graph from a certain subclass that is Markov equivalent to a given graph. We particularly focus on the class of maximal ancestral graphs and its subclasses, namely regression graphs, bidirected graphs, undirected graphs, and directed acyclic graphs, and present novel results for representational Markov equivalence and algorithms.
READ FULL TEXT