Markov Determinantal Point Processes

10/16/2012
by   Raja Hafiz Affandi, et al.
0

A determinantal point process (DPP) is a random process useful for modeling the combinatorial problem of subset selection. In particular, DPPs encourage a random subset Y to contain a diverse set of items selected from a base set Y. For example, we might use a DPP to display a set of news headlines that are relevant to a user's interests while covering a variety of topics. Suppose, however, that we are asked to sequentially select multiple diverse sets of items, for example, displaying new headlines day-by-day. We might want these sets to be diverse not just individually but also through time, offering headlines today that are unlike the ones shown yesterday. In this paper, we construct a Markov DPP (M-DPP) that models a sequence of random sets Yt. The proposed M-DPP defines a stationary process that maintains DPP margins. Crucially, the induced union process Zt = Yt u Yt-1 is also marginally DPP-distributed. Jointly, these properties imply that the sequence of random sets are encouraged to be diverse both at a given time step as well as across time steps. We describe an exact, efficient sampling procedure, and a method for incrementally learning a quality measure over items in the base set Y based on external preferences. We apply the M-DPP to the task of sequentially displaying diverse and relevant news articles to a user with topic preferences.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro