DeepAI AI Chat
Log In Sign Up

Markov Chain Monte Carlo sampling for conditional tests: A link between permutation tests and algebraic statistics

by   Roberto Fontana, et al.

We consider conditional tests for non-negative discrete exponential families. We develop two Markov Chain Monte Carlo (MCMC) algorithms which allow us to sample from the conditional space and to perform approximated tests. The first algorithm is based on the MCMC sampling described by Sturmfels. The second MCMC sampling consists in a more efficient algorithm which exploits the optimal partition of the conditional space into orbits of permutations. We thus establish a link between standard permutation and algebraic-statistics-based sampling. Through a simulation study we compare the exact cumulative distribution function (cdf) with the approximated cdfs which are obtained with the two MCMC samplings and the standard permutation sampling. We conclude that the MCMC sampling which exploits the partition of the conditional space into orbits of permutations gives an estimated cdf, under H_0, which is more reliable and converges to the exact cdf with the least steps. This sampling technique can also be used to build an approximation of the exact cdf when its exact computation is computationally infeasible.


page 1

page 2

page 3

page 4


Projected Latent Markov Chain Monte Carlo: Conditional Inference with Normalizing Flows

We introduce Projected Latent Markov Chain Monte Carlo (PL-MCMC), a tech...

State-Dependent Kernel Selection for Conditional Sampling of Graphs

This paper introduces new efficient algorithms for two problems: samplin...

A simple Markov chain for independent Bernoulli variables conditioned on their sum

We consider a vector of N independent binary variables, each with a diff...

DBSOP: An Efficient Heuristic for Speedy MCMC Sampling on Polytopes

Markov Chain Monte Carlo (MCMC) techniques have long been studied in com...

FPRAS Approximation of the Matrix Permanent in Practice

The matrix permanent belongs to the complexity class #P-Complete. It is ...

Mallows permutation models with L^1 and L^2 distances I: hit and run algorithms and mixing times

Mallows permutation model, introduced by Mallows in statistical ranking ...

Frequency violations from random disturbances: an MCMC approach

The frequency stability of power systems is increasingly challenged by v...