Maplets: An Efficient Approach for Cooperative SLAM Map Building Under Communication and Computation Constraints

05/20/2020
by   Kevin M. Brink, et al.
0

This article introduces an approach to facilitate cooperative exploration and mapping of large-scale, near-ground, underground, or indoor spaces via a novel integration framework for locally-dense agent map data. The effort targets limited Size, Weight, and Power (SWaP) agents with an emphasis on limiting required communications and redundant processing. The approach uses a unique organization of batch optimization engines to enable a highly efficient two-tier optimization structure. Tier I consist of agents that create and potentially share local maplets (local maps, limited in size) which are generated using Simultaneous Localization and Mapping (SLAM) map-building software and then marginalized to a more compact parameterization. Maplets are generated in an overlapping manner and used to estimate the transform and uncertainty between those overlapping maplets, providing accurate and compact odometry or delta-pose representation between maplet's local frames. The delta poses can be shared between agents, and in cases where maplets have salient features (for loop closures), the compact representation of the maplet can also be shared. The second optimization tier consists of a global optimizer that seeks to optimize those maplet-to-maplet transformations, including any loop closures identified. This can provide an accurate global "skeleton"' of the traversed space without operating on the high-density point cloud. This compact version of the map data allows for scalable, cooperative exploration with limited communication requirements where most of the individual maplets, or low fidelity renderings, are only shared if desired.

READ FULL TEXT
research
07/19/2021

CodeMapping: Real-Time Dense Mapping for Sparse SLAM using Compact Scene Representations

We propose a novel dense mapping framework for sparse visual SLAM system...
research
09/19/2022

MeSLAM: Memory Efficient SLAM based on Neural Fields

Existing Simultaneous Localization and Mapping (SLAM) approaches are lim...
research
07/11/2023

Neuro-Inspired Efficient Map Building via Fragmentation and Recall

Animals and robots navigate through environments by building and refinin...
research
05/20/2020

Compute-Bound and Low-Bandwidth Distributed 3D Graph-SLAM

This article describes a new approach for distributed 3D SLAM map buildi...
research
08/12/2021

COVINS: Visual-Inertial SLAM for Centralized Collaboration

Collaborative SLAM enables a group of agents to simultaneously co-locali...
research
10/09/2019

A Brain-Inspired Compact Cognitive Mapping System

As the robot explores the environment, the map grows over time in the si...
research
03/02/2022

Distributed Riemannian Optimization with Lazy Communication for Collaborative Geometric Estimation

We present the first distributed optimization algorithm with lazy commun...

Please sign up or login with your details

Forgot password? Click here to reset