MANNER: Multi-view Attention Network for Noise Erasure

03/04/2022
by   Hyun Joon Park, et al.
0

In the field of speech enhancement, time domain methods have difficulties in achieving both high performance and efficiency. Recently, dual-path models have been adopted to represent long sequential features, but they still have limited representations and poor memory efficiency. In this study, we propose Multi-view Attention Network for Noise ERasure (MANNER) consisting of a convolutional encoder-decoder with a multi-view attention block, applied to the time-domain signals. MANNER efficiently extracts three different representations from noisy speech and estimates high-quality clean speech. We evaluated MANNER on the VoiceBank-DEMAND dataset in terms of five objective speech quality metrics. Experimental results show that MANNER achieves state-of-the-art performance while efficiently processing noisy speech.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro