Manipulating Weights to Improve Stress-Graph Drawings of 3-Connected Planar Graphs

07/20/2023
by   Alvin Chiu, et al.
0

We study methods to manipulate weights in stress-graph embeddings to improve convex straight-line planar drawings of 3-connected planar graphs. Stress-graph embeddings are weighted versions of Tutte embeddings, where solving a linear system places vertices at a minimum-energy configuration for a system of springs. A major drawback of the unweighted Tutte embedding is that it often results in drawings with exponential area. We present a number of approaches for choosing better weights. One approach constructs weights (in linear time) that uniformly spread all vertices in a chosen direction, such as parallel to the x- or y-axis. A second approach morphs x- and y-spread drawings to produce a more aesthetically pleasing and uncluttered drawing. We further explore a "kaleidoscope" paradigm for this xy-morph approach, where we rotate the coordinate axes so as to find the best spreads and morphs. A third approach chooses the weight of each edge according to its depth in a spanning tree rooted at the outer vertices, such as a Schnyder wood or BFS tree, in order to pull vertices closer to the boundary.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset