Manipulating Embeddings of Stable Diffusion Prompts

08/23/2023
by   Niklas Deckers, et al.
0

Generative text-to-image models such as Stable Diffusion allow users to generate images based on a textual description, the prompt. Changing the prompt is still the primary means for the user to change a generated image as desired. However, changing the image by reformulating the prompt remains a difficult process of trial and error, which has led to the emergence of prompt engineering as a new field of research. We propose and analyze methods to change the embedding of a prompt directly instead of the prompt text. It allows for more fine-grained and targeted control that takes into account user intentions. Our approach treats the generative text-to-image model as a continuous function and passes gradients between the image space and the prompt embedding space. By addressing different user interaction problems, we can apply this idea in three scenarios: (1) Optimization of a metric defined in image space that could measure, for example, image style. (2) Assistance of users in creative tasks by enabling them to navigate the image space along a selection of directions of "near" prompt embeddings. (3) Changing the embedding of the prompt to include information that the user has seen in a particular seed but finds difficult to describe in the prompt. Our experiments demonstrate the feasibility of the described methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset