Manifold Partition Discriminant Analysis

11/23/2020 ∙ by Yang Zhou, et al. ∙ 0

We propose a novel algorithm for supervised dimensionality reduction named Manifold Partition Discriminant Analysis (MPDA). It aims to find a linear embedding space where the within-class similarity is achieved along the direction that is consistent with the local variation of the data manifold, while nearby data belonging to different classes are well separated. By partitioning the data manifold into a number of linear subspaces and utilizing the first-order Taylor expansion, MPDA explicitly parameterizes the connections of tangent spaces and represents the data manifold in a piecewise manner. While graph Laplacian methods capture only the pairwise interaction between data points, our method capture both pairwise and higher order interactions (using regional consistency) between data points. This manifold representation can help to improve the measure of within-class similarity, which further leads to improved performance of dimensionality reduction. Experimental results on multiple real-world data sets demonstrate the effectiveness of the proposed method.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 12

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.