Manifold Optimization for Gaussian Mixture Models
We take a new look at parameter estimation for Gaussian Mixture Models (GMMs). In particular, we propose using Riemannian manifold optimization as a powerful counterpart to Expectation Maximization (EM). An out-of-the-box invocation of manifold optimization, however, fails spectacularly: it converges to the same solution but vastly slower. Driven by intuition from manifold convexity, we then propose a reparamerization that has remarkable empirical consequences. It makes manifold optimization not only match EM---a highly encouraging result in itself given the poor record nonlinear programming methods have had against EM so far---but also outperform EM in many practical settings, while displaying much less variability in running times. We further highlight the strengths of manifold optimization by developing a somewhat tuned manifold LBFGS method that proves even more competitive and reliable than existing manifold optimization tools. We hope that our results encourage a wider consideration of manifold optimization for parameter estimation problems.
READ FULL TEXT