Magnetometer-free inertial motion tracking of arbitrary joints with range of motion constraints

02/03/2020 ∙ by Dustin Lehmann, et al. ∙ 0

In motion tracking of connected multi-body systems Inertial Measurement Units (IMUs) are used in a wide variety of applications, since they provide a low-cost easy-to-use method for orientation estimation. However, in indoor environments or near ferromagnetic material the magnetic field is inhomogeneous which limits the accuracy of tracking algorithms using magnetometers. Methods that use only accelerometers and gyroscopes on the other hand yield no information on the absolute heading of the tracked object. For objects connected by rotational joints with range of motion constraints we propose a method that provides a magnetometer-free, long-term stable relative orientation estimate based on a non-linear, window-based cost function. The method can be used for real-time estimation as well as post-processing. It is validated experimentally with a mechanical joint and compared to other methods that are used in motion tracking. It is shown that for the used test object, the proposed methods yields the best results with a total angle error of less than 4 degrees for all experiments.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.