Machine Learning to Predict the Antimicrobial Activity of Cold Atmospheric Plasma-Activated Liquids

07/25/2022
by   Mehmet Akif Ozdemir, et al.
17

Plasma is defined as the fourth state of matter and non-thermal plasma can be produced at atmospheric pressure under a high electrical field. The strong and broad-spectrum antimicrobial effect of plasma-activated liquids (PALs) is now well known. The proven applicability of machine learning (ML) in the medical field is encouraging for its application in the field of plasma medicine as well. Thus, ML applications on PALs could present a new perspective to better understand the influences of various parameters on their antimicrobial effects. In this paper, comparative supervised ML models are presented by using previously obtained data to qualitatively predict the in vitro antimicrobial activity of PALs. A literature search was performed and data is collected from 33 relevant articles. After the required preprocessing steps, two supervised ML methods, namely classification, and regression are applied to data to obtain microbial inactivation (MI) predictions. For classification, MI is labeled in four categories and for regression, MI is used as a continuous variable. Two different robust cross-validation strategies are conducted for classification and regression models to evaluate the proposed method; repeated stratified k-fold cross-validation and k-fold cross-validation, respectively. We also investigate the effect of different features on models. The results demonstrated that the hyperparameter-optimized Random Forest Classifier (oRFC) and Random Forest Regressor (oRFR) provided better results than other models for the classification and regression, respectively. Finally, the best test accuracy of 82.68 techniques could contribute to a better understanding of plasma parameters that have a dominant role in the desired antimicrobial effect. Furthermore, such findings may contribute to the definition of a plasma dose in the future.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro