Machine Learning for Predictive Analytics of Compute Cluster Jobs
We address the problem of predicting whether sufficient memory and CPU resources have been requested for jobs at submission time. For this purpose, we examine the task of training a supervised machine learning system to predict the outcome - whether the job will fail specifically due to insufficient resources - as a classification task. Sufficiently high accuracy, precision, and recall at this task facilitates more anticipatory decision support applications in the domain of HPC resource allocation. Our preliminary results using a new test bed show that the probability of failed jobs is associated with information freely available at job submission time and may thus be usable by a learning system for user modeling that gives personalized feedback to users.
READ FULL TEXT