Machine Learning for Genomic Data

11/15/2021
by   Akankshita Dash, et al.
16

This report explores the application of machine learning techniques on short timeseries gene expression data. Although standard machine learning algorithms work well on longer time-series', they often fail to find meaningful insights from fewer timepoints. In this report, we explore model-based clustering techniques. We combine popular unsupervised learning techniques like K-Means, Gaussian Mixture Models, Bayesian Networks, Hidden Markov Models with the well-known Expectation Maximization algorithm. K-Means and Gaussian Mixture Models are fairly standard, while Hidden Markov Model and Bayesian Networks clustering are more novel ideas that suit time-series gene expression data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro