Machine learning for causal inference: on the use of cross-fit estimators

04/21/2020
by   Paul N Zivich, et al.
0

Modern causal inference methods allow machine learning to be used to weaken parametric modeling assumptions. However, the use of machine learning may result in bias and incorrect inferences due to overfitting. Cross-fit estimators have been proposed to eliminate this bias and yield better statistical properties. We conducted a simulation study to assess the performance of several different estimators for the average causal effect (ACE). The data generating mechanisms for the simulated treatment and outcome included log-transforms, polynomial terms, and discontinuities. We compared singly-robust estimators (g-formula, inverse probability weights) and doubly-robust estimators (augmented inverse probability weights, targeted maximum likelihood estimation). Nuisance functions were estimated with parametric models and ensemble machine learning, separately. We further assessed cross-fit doubly-robust estimators. With correctly specified parametric models, all of the estimators were unbiased and confidence intervals achieved nominal coverage. When used with machine learning, only the cross-fit estimators were unbiased and had nominal confidence interval coverage. Due to the difficulty of properly specifying parametric models in high dimensional data, doubly-robust estimators with ensemble learning and cross-fitting may be the preferred approach for estimation of the ACE in most epidemiologic studies. However, these approaches may require larger sample sizes to avoid finite-sample issues.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset