Machine Learning-Based Test Smell Detection

08/16/2022
by   Valeria Pontillo, et al.
0

Context: Test smells are symptoms of sub-optimal design choices adopted when developing test cases. Previous studies have proved their harmfulness for test code maintainability and effectiveness. Therefore, researchers have been proposing automated, heuristic-based techniques to detect them. However, the performance of such detectors is still limited and dependent on thresholds to be tuned. Objective: We propose the design and experimentation of a novel test smell detection approach based on machine learning to detect four test smells. Method: We plan to develop the largest dataset of manually-validated test smells. This dataset will be leveraged to train six machine learners and assess their capabilities in within- and cross-project scenarios. Finally, we plan to compare our approach with state-of-the-art heuristic-based techniques.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset