Machine Learning-based Anomaly Detection in Optical Fiber Monitoring

03/19/2022
by   Khouloud Abdelli, et al.
0

Secure and reliable data communication in optical networks is critical for high-speed Internet. However, optical fibers, serving as the data transmission medium providing connectivity to billons of users worldwide, are prone to a variety of anomalies resulting from hard failures (e.g., fiber cuts) and malicious physical attacks (e.g., optical eavesdropping (fiber tapping)) etc. Such anomalies may cause network disruption and thereby inducing huge financial and data losses, or compromise the confidentiality of optical networks by gaining unauthorized access to the carried data, or gradually degrade the network operations. Therefore, it is highly required to implement efficient anomaly detection, diagnosis, and localization schemes for enhancing the availability and reliability of optical networks. In this paper, we propose a data driven approach to accurately and quickly detect, diagnose, and localize fiber anomalies including fiber cuts, and optical eavesdropping attacks. The proposed method combines an autoencoder-based anomaly detection and an attention-based bidirectional gated recurrent unit algorithm, whereby the former is used for fault detection and the latter is adopted for fault diagnosis and localization once an anomaly is detected by the autoencoder. We verify the efficiency of our proposed approach by experiments under various anomaly scenarios using real operational data. The experimental results demonstrate that: (i) the autoencoder detects any fiber fault or anomaly with an F1 score of 96.86 recurrent unit algorithm identifies the the detected anomalies with an average accuracy of 98.2 error of 0.19 m.

READ FULL TEXT
research
02/23/2022

ML-based Anomaly Detection in Optical Fiber Monitoring

Secure and reliable data communication in optical networks is critical f...
research
09/18/2023

Autoencoder-based Anomaly Detection System for Online Data Quality Monitoring of the CMS Electromagnetic Calorimeter

The CMS detector is a general-purpose apparatus that detects high-energy...
research
03/19/2022

Gated Recurrent Unit based Autoencoder for Optical Link Fault Diagnosis in Passive Optical Networks

We propose a deep learning approach based on an autoencoder for identify...
research
10/14/2022

Autoencoder based Anomaly Detection and Explained Fault Localization in Industrial Cooling Systems

Anomaly detection in large industrial cooling systems is very challengin...
research
11/05/2022

Degradation Prediction of Semiconductor Lasers using Conditional Variational Autoencoder

Semiconductor lasers have been rapidly evolving to meet the demands of n...
research
07/08/2023

Fault Monitoring in Passive Optical Networks using Machine Learning Techniques

Passive optical network (PON) systems are vulnerable to a variety of fai...
research
08/31/2023

Autoencoder-based Online Data Quality Monitoring for the CMS Electromagnetic Calorimeter

The online Data Quality Monitoring system (DQM) of the CMS electromagnet...

Please sign up or login with your details

Forgot password? Click here to reset