Machine Learning at Scale

02/25/2014
by   Sergei Izrailev, et al.
0

It takes skill to build a meaningful predictive model even with the abundance of implementations of modern machine learning algorithms and readily available computing resources. Building a model becomes challenging if hundreds of terabytes of data need to be processed to produce the training data set. In a digital advertising technology setting, we are faced with the need to build thousands of such models that predict user behavior and power advertising campaigns in a 24/7 chaotic real-time production environment. As data scientists, we also have to convince other internal departments critical to implementation success, our management, and our customers that our machine learning system works. In this paper, we present the details of the design and implementation of an automated, robust machine learning platform that impacts billions of advertising impressions monthly. This platform enables us to continuously optimize thousands of campaigns over hundreds of millions of users, on multiple continents, against varying performance objectives.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro