Machine Learning and Bioinformatics for Diagnosis Analysis of Obesity Spectrum Disorders

08/05/2022
by   Amin Gasmi, et al.
0

Globally, the number of obese patients has doubled due to sedentary lifestyles and improper dieting. The tremendous increase altered human genetics, and health. According to the world health organization, Life expectancy dropped from 80 to 75 years, as obese people struggle with different chronic diseases. This report will address the problems of obesity in children and adults using ML datasets to feature, predict, and analyze the causes of obesity. By engaging neural ML networks, we will explore neural control using diffusion tensor imaging to consider body fats, BMI, waist & hip ratio circumference of obese patients. To predict the present and future causes of obesity with ML, we will discuss ML techniques like decision trees, SVM, RF, GBM, LASSO, BN, and ANN and use datasets implement the stated algorithms. Different theoretical literature from experts ML & Bioinformatics experiments will be outlined in this report while making recommendations on how to advance ML for predicting obesity and other chronic diseases.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro