M-type penalized splines with auxiliary scale estimation

06/20/2019
by   Ioannis Kalogridis, et al.
0

Penalized spline smoothing is a popular and flexible method of obtaining estimates in nonparametric regression but the classical least-squares criterion is highly susceptible to model deviations and atypical observations. Penalized spline estimation with a resistant loss function is a natural remedy, yet to this day the asymptotic properties of M-type penalized spline estimators have not been studied. We show in this paper that M-type penalized spline estimators achieve the same rates of convergence as their least-squares counterparts, even with auxiliary scale estimation. We further find theoretical justification for the use of a small number of knots relative to the sample size. We illustrate the benefits of M-type penalized splines in a Monte-Carlo study and two real-data examples, which contain atypical observations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro