LS-VO: Learning Dense Optical Subspace for Robust Visual Odometry Estimation

09/18/2017
by   Gabriele Costante, et al.
0

This work proposes a novel deep network architecture to solve the camera Ego-Motion estimation problem. A motion estimation network generally learns features similar to Optical Flow (OF) fields starting from sequences of images. This OF can be described by a lower dimensional latent space. Previous research has shown how to find linear approximations of this space. We propose to use an Auto-Encoder network to find a non-linear representation of the OF manifold. In addition, we propose to learn the latent space jointly with the estimation task, so that the learned OF features become a more robust description of the OF input. We call this novel architecture LS-VO. The experiments show that LS-VO achieves a considerable increase in performances in respect to baselines, while the number of parameters of the estimation network only slightly increases.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset