Low Resource Recognition and Linking of Biomedical Concepts from a Large Ontology

01/26/2021
by   Sunil Mohan, et al.
22

Tools to explore scientific literature are essential for scientists, especially in biomedicine, where about a million new papers are published every year. Many such tools provide users the ability to search for specific entities (e.g. proteins, diseases) by tracking their mentions in papers. PubMed, the most well known database of biomedical papers, relies on human curators to add these annotations. This can take several weeks for new papers, and not all papers get tagged. Machine learning models have been developed to facilitate the semantic indexing of scientific papers. However their performance on the more comprehensive ontologies of biomedical concepts does not reach the levels of typical entity recognition problems studied in NLP. In large part this is due to their low resources, where the ontologies are large, there is a lack of descriptive text defining most entities, and labeled data can only cover a small portion of the ontology. In this paper, we develop a new model that overcomes these challenges by (1) generalizing to entities unseen at training time, and (2) incorporating linking predictions into the mention segmentation decisions. Our approach achieves new state-of-the-art results for the UMLS ontology in both traditional recognition/linking (+8 F1 pts) as well as semantic indexing-based evaluation (+10 F1 pts).

READ FULL TEXT
research
02/25/2019

MedMentions: A Large Biomedical Corpus Annotated with UMLS Concepts

This paper presents the formal release of MedMentions, a new manually an...
research
06/20/2018

Ontology Alignment in the Biomedical Domain Using Entity Definitions and Context

Ontology alignment is the task of identifying semantically equivalent en...
research
09/01/2022

A large dataset of software mentions in the biomedical literature

We describe the CZ Software Mentions dataset, a new dataset of software ...
research
06/14/2021

Biomedical Entity Linking with Contrastive Context Matching

We introduce BioCoM, a contrastive learning framework for biomedical ent...
research
05/06/2018

Construction of the Literature Graph in Semantic Scholar

We describe a deployed scalable system for organizing published scientif...
research
01/31/2018

Onto2Vec: joint vector-based representation of biological entities and their ontology-based annotations

We propose the Onto2Vec method, an approach to learn feature vectors for...
research
12/05/2018

Approach for Semi-automatic Construction of Anti-infective Drug Ontology Based on Entity Linking

Ontology can be used for the interpretation of natural language. To cons...

Please sign up or login with your details

Forgot password? Click here to reset