Low-rank passthrough neural networks

Deep learning consists in training neural networks to perform computations that sequentially unfold in many steps over a time dimension or an intrinsic depth dimension. Effective learning in this setting is usually accomplished by specialized network architectures that are designed to mitigate the vanishing gradient problem of naive deep networks. Many of these architectures, such as LSTMs, GRUs, Highway Networks and Deep Residual Network, are based on a single structural principle: the state passthrough. We observe that these architectures, hereby characterized as Passthrough Networks, in addition to the mitigation of the vanishing gradient problem, enable the decoupling of the network state size from the number of parameters of the network, a possibility that is exploited in some recent works but not thoroughly explored. In this work we propose simple, yet effective, low-rank and low-rank plus diagonal matrix parametrizations for Passthrough Networks which exploit this decoupling property, reducing the data complexity and memory requirements of the network while preserving its memory capacity. We present competitive experimental results on synthetic tasks and a near state of the art result on sequential randomly-permuted MNIST classification, a hard task on natural data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset