Low-Rank Matrix Approximations with Flip-Flop Spectrum-Revealing QR Factorization

03/06/2018
by   Yuehua Feng, et al.
0

We present Flip-Flop Spectrum-Revealing QR (Flip-Flop SRQR) factorization, a significantly faster and more reliable variant of the QLP factorization of Stewart, for low-rank matrix approximations. Flip-Flop SRQR uses SRQR factorization to initialize a partial column pivoted QR factorization and then compute a partial LQ factorization. As observed by Stewart in his original QLP work, Flip-Flop SRQR tracks the exact singular values with "considerable fidelity". We develop singular value lower bounds and residual error upper bounds for Flip-Flop SRQR factorization. In situations where singular values of the input matrix decay relatively quickly, the low-rank approximation computed by SRQR is guaranteed to be as accurate as truncated SVD. We also perform a complexity analysis to show that for the same accuracy, Flip-Flop SRQR is faster than randomized subspace iteration for approximating the SVD, the standard method used in Matlab tensor toolbox. We also compare Flip-Flop SRQR with alternatives on two applications, tensor approximation and nuclear norm minimization, to demonstrate its efficiency and effectiveness.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset