Low Rank Approximation of Dual Complex Matrices

01/30/2022
by   Liqun Qi, et al.
0

Dual complex numbers can represent rigid body motion in 2D spaces. Dual complex matrices are linked with screw theory, and have potential applications in various areas. In this paper, we study low rank approximation of dual complex matrices. We define 2-norm for dual complex vectors, and Frobenius norm for dual complex matrices. These norms are nonnegative dual numbers. We establish the unitary invariance property of dual complex matrices. We study eigenvalues of square dual complex matrices, and show that an n × n dual complex Hermitian matrix has exactly n eigenvalues, which are dual numbers. We present a singular value decomposition (SVD) theorem for dual complex matrices, define ranks and appreciable ranks for dual complex matrices, and study their properties. We establish an Eckart-Young like theorem for dual complex matrices, and present an algorithm framework for low rank approximation of dual complex matrices via truncated SVD. The SVD of dual complex matrices also provides a basic tool for Principal Component Analysis (PCA) via these matrices. Numerical experiments are reported.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset