Low-rank approximation for multiscale PDEs
Historically, analysis for multiscale PDEs is largely unified while numerical schemes tend to be equation-specific. In this paper, we propose a unified framework for computing multiscale problems through random sampling. This is achieved by incorporating randomized SVD solvers and manifold learning techniques to numerically reconstruct the low-rank features of multiscale PDEs. We use multiscale radiative transfer equation and elliptic equation with rough media to showcase the application of this framework.
READ FULL TEXT