Low-latency auditory spatial attention detection based on spectro-spatial features from EEG

03/05/2021 ∙ by Siqi Cai, et al. ∙ 0

Detecting auditory attention based on brain signals enables many everyday applications, and serves as part of the solution to the cocktail party effect in speech processing. Several studies leverage the correlation between brain signals and auditory stimuli to detect the auditory attention of listeners. Recently, studies show that the alpha band (8-13 Hz) EEG signals enable the localization of auditory stimuli. We believe that it is possible to detect auditory spatial attention without the need of auditory stimuli as references. In this work, we use alpha power signals for automatic auditory spatial attention detection. To the best of our knowledge, this is the first attempt to detect spatial attention based on alpha power neural signals. We propose a spectro-spatial feature extraction technique to detect the auditory spatial attention (left/right) based on the topographic specificity of alpha power. Experiments show that the proposed neural approach achieves 81.7 accuracy for 1-second and 10-second decision windows, respectively. Our comparative results show that this neural approach outperforms other competitive models by a large margin in all test cases.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.