Low-Dimensional Spatial Embedding Method for Shape Uncertainty Quantification in Acoustic Scattering

04/25/2017
by   Yuval Harness, et al.
0

This paper introduces a novel boundary integral approach of shape uncertainty quantification for the Helmholtz scattering problem in the framework of the so-called parametric method. The key idea is to form a low-dimensional spatial embedding within the family of uncertain boundary deformations via the Coarea formula. The embedding, essentially, encompasses any irregular behavior of the boundary deformations and facilitates a low-dimensional integration rule capturing the bulk variation of output functionals defined on the boundary. In a second phase a matching parametric grid is imposed. For the ease of presentation the theory is restricted to 2D star-shaped obstacles in low-dimensional setting. We employ the null-field reconstruction technique which is capable of handling large shape deformations. Higher spatial and parametric dimensional cases are discussed, though, not extensively explored in the current study.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro