Low-cost Stochastic Number Generators for Stochastic Computing

01/03/2020
by   Sayed Ahmad Salehi, et al.
0

Stochastic unary computing provides low-area circuits. However, the required area consuming stochastic number generators (SNGs) in these circuits can diminish their overall gain in area, particularly if several SNGs are required. We propose area-efficient SNGs by sharing the permuted output of one linear feedback shift register (LFSR) among several SNGs. With no hardware overhead, the proposed architecture generates stochastic bit streams with minimum stochastic computing correlation (SCC). Compared to the circular shifting approach presented in prior work, our approach produces stochastic bit streams with 67 generalize our approach, we propose an algorithm to find a set of m permutations (n>m>2) with minimum pairwise SCC, for an n-bit LFSR. The search space for finding permutations with exact minimum SCC grows rapidly when n increases and it is intractable to perform a search algorithm using accurately calculated pairwise SCC values, for n>9. We propose a similarity function that can be used in the proposed search algorithm to quickly find a set of permutations with SCC values close to the minimum one. We evaluated our approach for several applications. The results show that, compared to prior work, it achieves lower MSE with the same (or even lower) area. Additionally, based on simulation results, we show that replacing the comparator component of an SNG circuit with a weighted binary generator can reduce SCC.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset