Low-complexity Robust Optimization for an IRS-assisted Multi-Cell Network

09/18/2021
by   Yuhang Jia, et al.
0

The impacts of channel estimation errors, inter-cell interference, phase adjustment cost, and computation cost on an intelligent reflecting surface (IRS)-assisted system are severe in practice but have been ignored for simplicity in most existing works. In this paper, we investigate a multi-antenna base station (BS) serving a single-antenna user with the help of a multi-element IRS in the presence of channel estimation errors and inter-cell interference. We consider imperfect channel state information (CSI) at the BS, i.e., imperfect CSIT, and focus on the robust optimization of the BS's instantaneous CSI-adaptive beamforming and the IRS's quasi-static phase shifts. First, we formulate the robust optimization of the BS's instantaneous channel state information (CSI)-adaptive beamforming and IRS's quasi-static phase shifts for the ergodic rate maximization as a very challenging two-timescale stochastic non-convex problem. Then, we obtain a closed-form beamformer for any given phase shifts and a more tractable single-timescale stochastic non-convex problem only for phase shifts. Next, we propose a low-complexity stochastic algorithm to obtain quasi-static phase shifts which correspond to a KKT point of the single-timescale stochastic problem. It is worth noting that the proposed method offers a closed-form robust instantaneous CSI-adaptive beamforming design that can promptly adapt to rapid CSI changes over slots and a robust quasi-static phase shift design of low computation and phase adjustment costs in the presence of channel estimation errors and inter-cell interference. Finally, numerical results demonstrate the notable gains of the proposed robust joint design over existing ones and reveal the practical values of the proposed solutions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset