Lottery Jackpots Exist in Pre-trained Models
Network pruning is an effective approach to reduce network complexity without performance compromise. Existing studies achieve the sparsity of neural networks via time-consuming weight tuning or complex search on networks with expanded width, which greatly limits the applications of network pruning. In this paper, we show that high-performing and sparse sub-networks without the involvement of weight tuning, termed "lottery jackpots", exist in pre-trained models with unexpanded width. For example, we obtain a lottery jackpot that has only 10 VGGNet-19 without any modifications on the pre-trained weights. Furthermore, we observe that the sparse masks derived from many existing pruning criteria have a high overlap with the searched mask of our lottery jackpot, among which, the magnitude-based pruning results in the most similar mask with ours. Based on this insight, we initialize our sparse mask using the magnitude pruning, resulting in at least 3x cost reduction on the lottery jackpot search while achieves comparable or even better performance. Specifically, our magnitude-based lottery jackpot removes 90 easily obtains more than 70 ImageNet.
READ FULL TEXT