Loss minimization and parameter estimation with heavy tails

07/07/2013
by   Daniel Hsu, et al.
0

This work studies applications and generalizations of a simple estimation technique that provides exponential concentration under heavy-tailed distributions, assuming only bounded low-order moments. We show that the technique can be used for approximate minimization of smooth and strongly convex losses, and specifically for least squares linear regression. For instance, our d-dimensional estimator requires just Õ(d(1/δ)) random samples to obtain a constant factor approximation to the optimal least squares loss with probability 1-δ, without requiring the covariates or noise to be bounded or subgaussian. We provide further applications to sparse linear regression and low-rank covariance matrix estimation with similar allowances on the noise and covariate distributions. The core technique is a generalization of the median-of-means estimator to arbitrary metric spaces.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro