LOss-Based SensiTivity rEgulaRization: towards deep sparse neural networks

11/16/2020
by   Enzo Tartaglione, et al.
0

LOBSTER (LOss-Based SensiTivity rEgulaRization) is a method for training neural networks having a sparse topology. Let the sensitivity of a network parameter be the variation of the loss function with respect to the variation of the parameter. Parameters with low sensitivity, i.e. having little impact on the loss when perturbed, are shrunk and then pruned to sparsify the network. Our method allows to train a network from scratch, i.e. without preliminary learning or rewinding. Experiments on multiple architectures and datasets show competitive compression ratios with minimal computational overhead.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset