LOREN: Logic Enhanced Neural Reasoning for Fact Verification

12/25/2020 ∙ by Jiangjie Chen, et al. ∙ 0

Given a natural language statement, how to verify whether it is supported, refuted, or unknown according to a large-scale knowledge source like Wikipedia? Existing neural-network-based methods often regard a sentence as a whole. While we argue that it is beneficial to decompose a statement into multiple verifiable logical points. In this paper, we propose LOREN, a novel approach for fact verification that integrates both Logic guided Reasoning and Neural inference. The key insight of LOREN is that it decomposes a statement into multiple reasoning units around the central phrases. Instead of directly validating a single reasoning unit, LOREN turns it into a question-answering task and calculates the confidence of every single hypothesis using neural networks in the embedding space. They are aggregated to make a final prediction using a neural joint reasoner guided by a set of three-valued logic rules. LOREN enjoys the additional merit of interpretability – it is easy to explain how it reaches certain results with intermediate results and why it makes mistakes. We evaluate LOREN on FEVER, a public benchmark for fact verification. Experiments show that our proposed LOREN outperforms other previously published methods and achieves 73.43



There are no comments yet.


page 11

page 12

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.