Look It Up: Bilingual and Monolingual Dictionaries Improve Neural Machine Translation

10/12/2020
by   Xing Jie Zhong, et al.
0

Despite advances in neural machine translation (NMT) quality, rare words continue to be problematic. For humans, the solution to the rare-word problem has long been dictionaries, but dictionaries cannot be straightforwardly incorporated into NMT. In this paper, we describe a new method for "attaching" dictionary definitions to rare words so that the network can learn the best way to use them. We demonstrate improvements of up to 3.1 BLEU using bilingual dictionaries and up to 0.7 BLEU using monolingual source-language dictionaries.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset