Look Again at the Syntax: Relational Graph Convolutional Network for Gendered Ambiguous Pronoun Resolution
Gender bias has been found in existing coreference resolvers. In order to eliminate gender bias, a gender-balanced dataset Gendered Ambiguous Pronouns (GAP) has been released and the best baseline model achieves only 66.9 Bidirectional Encoder Representations from Transformers (BERT) has broken several NLP task records and can be used on GAP dataset. However, fine-tune BERT on a specific task is computationally expensive. In this paper, we propose an end-to-end resolver by combining pre-trained BERT with Relational Graph Convolutional Network (R-GCN). R-GCN is used for digesting structural syntactic information and learning better task-specific embeddings. Empirical results demonstrate that, under explicit syntactic supervision and without the need to fine tune BERT, R-GCN's embeddings outperform the original BERT embeddings on the coreference task. Our work obtains the state-of-the-art results on GAP dataset, and significantly improves the snippet-context baseline F1 score from 66.9 our codes are available online.
READ FULL TEXT