Long-tail Detection with Effective Class-Margins

01/23/2023
by   Jang Hyun Cho, et al.
0

Large-scale object detection and instance segmentation face a severe data imbalance. The finer-grained object classes become, the less frequent they appear in our datasets. However, at test-time, we expect a detector that performs well for all classes and not just the most frequent ones. In this paper, we provide a theoretical understanding of the long-trail detection problem. We show how the commonly used mean average precision evaluation metric on an unknown test set is bound by a margin-based binary classification error on a long-tailed object detection training set. We optimize margin-based binary classification error with a novel surrogate objective called Effective Class-Margin Loss (ECM). The ECM loss is simple, theoretically well-motivated, and outperforms other heuristic counterparts on LVIS v1 benchmark over a wide range of architecture and detectors. Code is available at <https://github.com/janghyuncho/ECM-Loss>.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset