LogBERT: Log Anomaly Detection via BERT

03/07/2021 ∙ by Haixuan Guo, et al. ∙ 0

Detecting anomalous events in online computer systems is crucial to protect the systems from malicious attacks or malfunctions. System logs, which record detailed information of computational events, are widely used for system status analysis. In this paper, we propose LogBERT, a self-supervised framework for log anomaly detection based on Bidirectional Encoder Representations from Transformers (BERT). LogBERT learns the patterns of normal log sequences by two novel self-supervised training tasks and is able to detect anomalies where the underlying patterns deviate from normal log sequences. The experimental results on three log datasets show that LogBERT outperforms state-of-the-art approaches for anomaly detection.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.