Locally repairable convertible codes with optimal access costs
Modern large-scale distributed storage systems use erasure codes to protect against node failures with low storage overhead. In practice, the failure rate and other factors of storage devices in the system may vary significantly over time, and leads to changes of the ideal code parameters. To maintain the storage efficiency, this requires the system to adjust parameters of the currently used codes. The changing process of code parameters on encoded data is called code conversion. As an important class of storage codes, locally repairable codes (LRCs) can repair any codeword symbol using a small number of other symbols. This feature makes LRCs highly efficient for addressing single node failures in the storage systems. In this paper, we investigate the code conversions for locally repairable codes in the merge regime. We establish a lower bound on the access cost of code conversion for general LRCs and propose a general construction of LRCs that can perform code conversions with access cost matching this bound. This construction provides a family of LRCs together with optimal conversion process over the field of size linear in the code length.
READ FULL TEXT