Locally Checkable Problems in Rooted Trees

02/18/2021
by   Alkida Balliu, et al.
0

Consider any locally checkable labeling problem Π in rooted regular trees: there is a finite set of labels Σ, and for each label x ∈Σ we specify what are permitted label combinations of the children for an internal node of label x (the leaf nodes are unconstrained). This formalism is expressive enough to capture many classic problems studied in distributed computing, including vertex coloring, edge coloring, and maximal independent set. We show that the distributed computational complexity of any such problem Π falls in one of the following classes: it is O(1), Θ(log^* n), Θ(log n), or Θ(n) rounds in trees with n nodes (and all of these classes are nonempty). We show that the complexity of any given problem is the same in all four standard models of distributed graph algorithms: deterministic LOCAL, randomized LOCAL, deterministic CONGEST, and randomized CONGEST model. In particular, we show that randomness does not help in this setting, and complexity classes such as Θ(loglog n) or Θ(√(n)) do not exist (while they do exist in the broader setting of general trees). We also show how to systematically determine the distributed computational complexity of any such problem Π. We present an algorithm that, given the description of Π, outputs the round complexity of Π in these models. While the algorithm may take exponential time in the size of the description of Π, it is nevertheless practical: we provide a freely available implementation of the classifier algorithm, and it is fast enough to classify many typical problems of interest.

READ FULL TEXT

page 1

page 2

page 3

page 4

11/29/2019

Classification of distributed binary labeling problems

We present a complete classification of the deterministic distributed ti...
02/17/2022

Efficient Classification of Local Problems in Regular Trees

We give practical, efficient algorithms that automatically determine the...
02/18/2019

How much does randomness help with locally checkable problems?

Locally checkable labeling problems (LCLs) are distributed graph problem...
11/05/2018

The distributed complexity of locally checkable problems on paths is decidable

Consider a computer network that consists of a path with n nodes. The no...
01/13/2019

Fast and Simple Deterministic Algorithms for Highly-Dynamic Networks

This paper provides a surprisingly simple method for obtaining fast (con...
04/20/2022

Deterministic Distributed algorithms and Descriptive Combinatorics on Δ-regular trees

We study complexity classes of local problems on regular trees from the ...
11/05/2018

Hardness of minimal symmetry breaking in distributed computing

A graph is weakly 2-colored if the nodes are labeled with colors black a...

Code Repositories

rooted-tree-classifier

See our manuscript at http://arxiv.org/abs/2102.09277


view repo