Local and global topological complexity measures OF ReLU neural network functions

04/12/2022
by   J. Elisenda Grigsby, et al.
0

We apply a generalized piecewise-linear (PL) version of Morse theory due to Grunert-Kuhnel-Rote to define and study new local and global notions of topological complexity for fully-connected feedforward ReLU neural network functions, F: R^n -> R. Along the way, we show how to construct, for each such F, a canonical polytopal complex K(F) and a deformation retract of the domain onto K(F), yielding a convenient compact model for performing calculations. We also give a combinatorial description of local complexity for depth 2 networks, and a construction showing that local complexity can be arbitrarily high.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro