Linking Received Packet to the Transmitter Through Physical-Fingerprinting of Controller Area Network

by   Omid Avatefipour, et al.

The Controller Area Network (CAN) bus serves as a legacy protocol for in-vehicle data communication. Simplicity, robustness, and suitability for real-time systems are the salient features of the CAN bus protocol. However, it lacks the basic security features such as massage authentication, which makes it vulnerable to the spoofing attacks. In a CAN network, linking CAN packet to the sender node is a challenging task. This paper aims to address this issue by developing a framework to link each CAN packet to its source. Physical signal attributes of the received packet consisting of channel and node (or device) which contains specific unique artifacts are considered to achieve this goal. Material and design imperfections in the physical channel and digital device, which are the main contributing factors behind the device-channel specific unique artifacts, are leveraged to link the received electrical signal to the transmitter. Generally, the inimitable patterns of signals from each ECUs exist over the course of time that can manifest the stability of the proposed method. Uniqueness of the channel-device specific attributes are also investigated for time- and frequency-domain. Feature vector is made up of both time and frequency domain physical attributes and then employed to train a neural network-based classifier. Performance of the proposed fingerprinting method is evaluated by using a dataset collected from 16 different channels and four identical ECUs transmitting same message. Experimental results indicate that the proposed method achieves correct detection rates of 95.2 channel and ECU classification, respectively.



There are no comments yet.


page 1

page 2

page 3

page 4


Covert Channel-Based Transmitter Authentication in Controller Area Networks

In recent years, the security of automotive Cyber-Physical Systems (CPSs...

Physical-Layer Authentication Using Channel State Information and Machine Learning

Strong authentication in an interconnected wireless environment continue...

CAN-LOC: Spoofing Detection and Physical Intrusion Localization on an In-Vehicle CAN Bus Based on Deep Features of Voltage Signals

The Controller Area Network (CAN) is used for communication between in-v...

TACAN: Transmitter Authentication through Covert Channels in Controller Area Networks

Nowadays, the interconnection of automotive systems with modern digital ...

Physical Layer Authentication for LEO Satellite Constellations

Physical layer authentication (PLA) is the process of claiming identity ...

ORACLE: Optimized Radio clAssification through Convolutional neuraL nEtworks

This paper describes the architecture and performance of ORACLE, an appr...

Practical Pitfalls for Security in OPC UA

In 2006, the OPC Foundation released the first specification for OPC Uni...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.