Linearly Stabilized Schemes for the Time Integration of Stiff Nonlinear PDEs

04/26/2021
by   Kevin Chow, et al.
0

In many applications, the governing PDE to be solved numerically contains a stiff component. When this component is linear, an implicit time stepping method that is unencumbered by stability restrictions is often preferred. On the other hand, if the stiff component is nonlinear, the complexity and cost per step of using an implicit method is heightened, and explicit methods may be preferred for their simplicity and ease of implementation. In this article, we analyze new and existing linearly stabilized schemes for the purpose of integrating stiff nonlinear PDEs in time. These schemes compute the nonlinear term explicitly and, at the cost of solving a linear system with a matrix that is fixed throughout, are unconditionally stable, thus combining the advantages of explicit and implicit methods. Applications are presented to illustrate the use of these methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset