Linearizability of eigenvector nonlinearities

05/21/2021 ∙ by Rob Claes, et al. ∙ 0

We present a method to linearize, without approximation, a specific class of eigenvalue problems with eigenvector nonlinearities (NEPv), where the nonlinearities are expressed by scalar functions that are defined by a quotient of linear functions of the eigenvector. The exact linearization relies on an equivalent multiparameter problem (MEP) that contains the exact solutions of the NEPv. Due to the characterization of MEPs in terms of a generalized eigenvalue problem this provides a direct way to compute all NEPv solutions for small problems, and it opens up the possibility to develop locally convergent iterative methods for larger problems. Moreover, the linear formulation allows us to easily determine the number of solutions of the NEPv. We propose two numerical schemes that exploit the structure of the linearization: inverse iteration and residual inverse iteration. We show how symmetry in the MEP can be used to improve reliability and reduce computational cost of both methods. Two numerical examples verify the theoretical results and a third example shows the potential of a hybrid scheme that is based on a combination of the two proposed methods.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.