Linear-time Algorithms for Eliminating Claws in Graphs

04/12/2020 ∙ by Flavia Bonomo-Braberman, et al. ∙ 0

Since many NP-complete graph problems have been shown polynomial-time solvable when restricted to claw-free graphs, we study the problem of determining the distance of a given graph to a claw-free graph, considering vertex elimination as measure. CLAW-FREE VERTEX DELETION (CFVD) consists of determining the minimum number of vertices to be removed from a graph such that the resulting graph is claw-free. Although CFVD is NP-complete in general and recognizing claw-free graphs is still a challenge, where the current best algorithm for a graph G has the same running time of the best algorithm for matrix multiplication, we present linear-time algorithms for CFVD on weighted block graphs and weighted graphs with bounded treewidth. Furthermore, we show that this problem can be solved in linear time by a simpler algorithm on forests, and we determine the exact values for full k-ary trees. On the other hand, we show that CLAW-FREE VERTEX DELETION is NP-complete even when the input graph is a split graph. We also show that the problem is hard to approximate within any constant factor better than 2, assuming the Unique Games Conjecture.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.