LightCAKE: A Lightweight Framework for Context-Aware Knowledge Graph Embedding
Knowledge graph embedding (KGE) models learn to project symbolic entities and relations into a continuous vector space based on the observed triplets. However, existing KGE models cannot make a proper trade-off between the graph context and the model complexity, which makes them still far from satisfactory. In this paper, we propose a lightweight framework named LightCAKE for context-aware KGE. LightCAKE explicitly models the graph context without introducing redundant trainable parameters, and uses an iterative aggregation strategy to integrate the context information into the entity/relation embeddings. As a generic framework, it can be used with many simple KGE models to achieve excellent results. Finally, extensive experiments on public benchmarks demonstrate the efficiency and effectiveness of our framework.
READ FULL TEXT