Lifted Relational Variational Inference

10/16/2012 ∙ by Jaesik Choi, et al. ∙ 0

Hybrid continuous-discrete models naturally represent many real-world applications in robotics, finance, and environmental engineering. Inference with large-scale models is challenging because relational structures deteriorate rapidly during inference with observations. The main contribution of this paper is an efficient relational variational inference algorithm that factors largescale probability models into simpler variational models, composed of mixtures of iid (Bernoulli) random variables. The algorithm takes probability relational models of largescale hybrid systems and converts them to a close-to-optimal variational models. Then, it efficiently calculates marginal probabilities on the variational models by using a latent (or lifted) variable elimination or a lifted stochastic sampling. This inference is unique because it maintains the relational structure upon individual observations and during inference steps.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.